

HNN: Hierarchical Noise-Deinterlace Net Towards Image Denoising Amogh Joshi, Nikhil Akalwadi, Chinmayee Mandi, Chaitra Desai, Ramesh Ashok Tabib, Ujwala Patil, Uma Mudenagudi KLETECH {joshiamoghmukund, chinmayeemandi2001}@gmail.com {nikhil.akalwadi, chaitra.desai, ramesh_t, ujwalapatil, uma}@kletech.ac.in **Perception Beyond Visible Spectrum (PBVS) 2024 HNN: Hierarchical Noise-Deinterlace Net** Hierarchical Noise-Deinterlace Net (HNN) Noisy Input **Denoised** Output M_r Image Image SCR Block Feature downscaling Image Conv Layer Feature upscaling Feature Map + Channel Concatenation

Abstract

In this paper, we propose Hierarchical Noise-Deinterlace Net (HNN), a hierarchical framework for image denoising aimed at recovering clean images from noisy observations. HNN processes both global and local information through a hierarchical encoder-decoder network with a Global-Local Spatio-Contextual (GLSC) block, learning fine-grained features and high-frequency details. This approach addresses limitations in existing methods such as vanishing gradients and lack of global context awareness. We demonstrate the efficacy of the HNN framework on benchmark datasets, showing a 5% (1 in dB) increase in performance compared to state-of-the-art methods.

Contributions

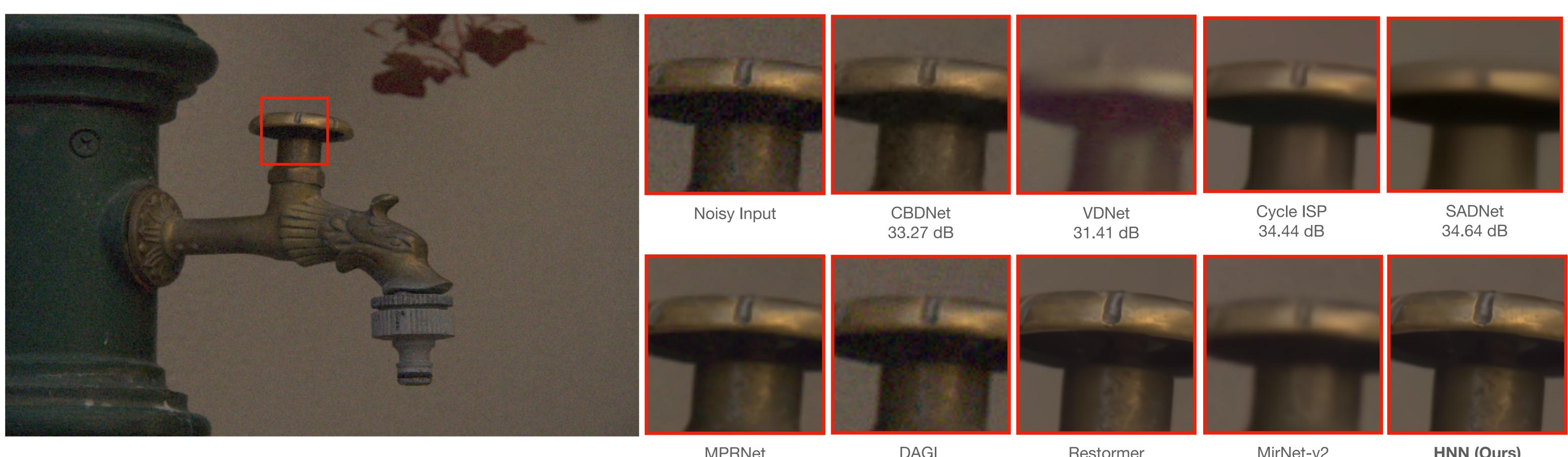
- The main contributions of this work include: We propose a hierarchy-based framework (HNN) for image-denoising.
 - We propose a novel hierarchical feature encoder to obtain features from three distinct scales.
 - We propose a Global-Local Spatio-Contextual (GLSC) block for learning of fine-grained features and high-frequency details.
- We introduce LH N N as a weighted combination of L1loss, VGG-19 perceptual loss, and MS-SSIM to exploit local spatial and contextual information across scales while keeping the original resolution of the image intact.

• We demonstrate the results of image denoising on bench-mark, real and synthetic datasets, and compare the performance with SOTA methods using quantitative metrics.

Table 1. Performance comparisons of HNN framework with SOTA methods on CBSD68 [21], Kodak24K [27], and McMaster [42] datasets with varying levels of σ . Cells highlighted in _ represents highest values and, cells highlighted in _ represents second highest values respectively.

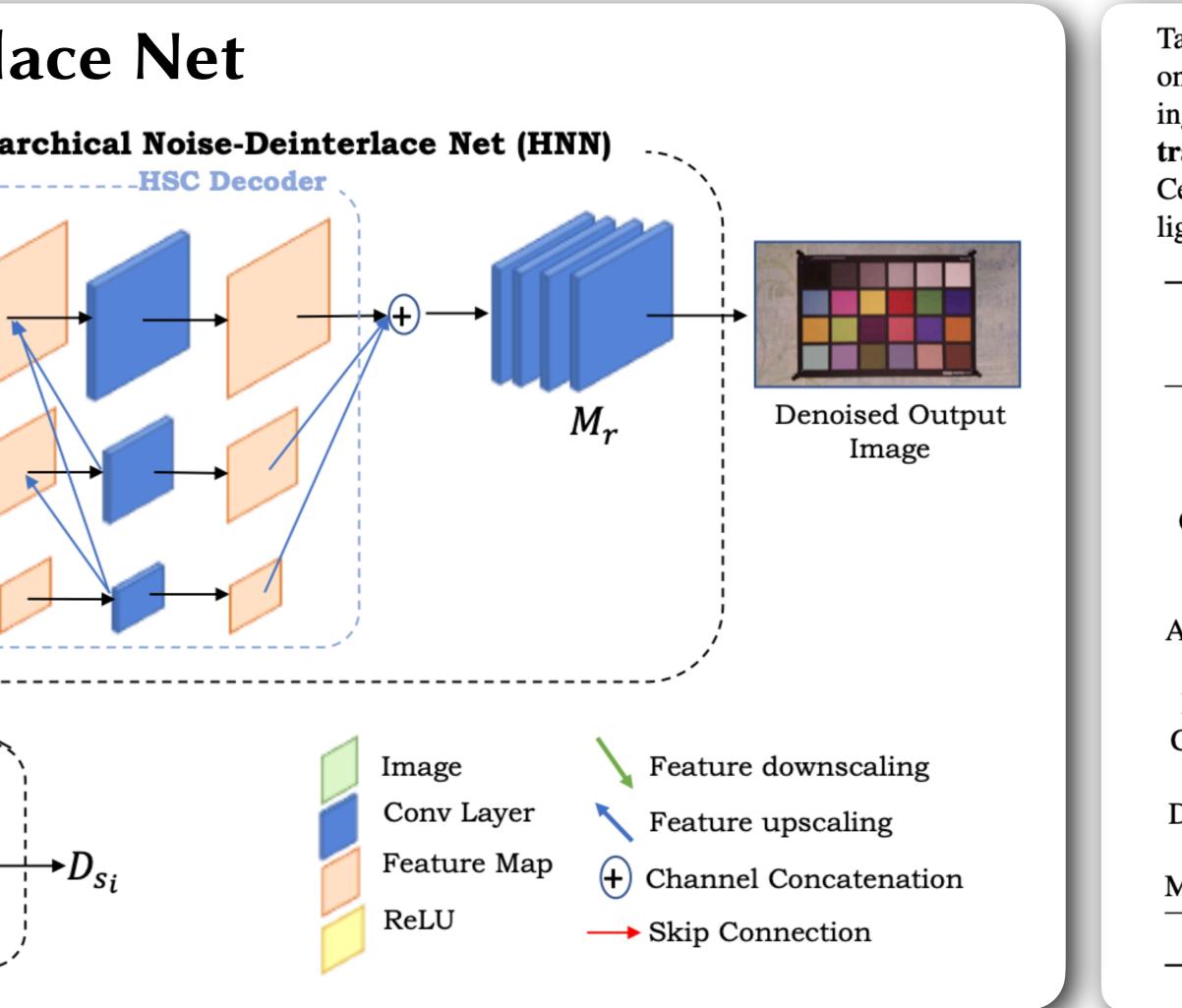
Datasets	CBSD68 [21]			Kodak24K [27]				McMaster [42]				
Noise Levels	$\sigma = 5$	$\sigma = 15$	$\sigma = 25$	$\sigma = 50$	$\sigma = 5$	$\sigma = 15$	$\sigma = 25$	$\sigma = 50$	$\sigma = 5$	$\sigma = 15$	$\sigma=25$	$\sigma = 50$
DnCNN [39] (2017)	23.89	21.86	19.94	18.11	22.31	21.84	19.56	17.40	24.09	22.84	20.11	18.60
CBDNet [13] (2019)	29.21	28.54	26.16	23.19	28.46	26.19	25.16	22.34	29.11	27.49	26.16	23.47
FFDNet [41] (2019)	33.81	32.59	29.66	27.42	32.69	31.09	28.63	25.94	33.94	32.17	30.45	28.44
SADNet [6] (2020)	35.31	34.04	34.10	31.74	36.10	35.44	32.71	31.44	36.40	34.31	32.75	29.97
CycleISP [34] (2020)	37.12	36.48	32.81	29.49	38.45	37.21	35.87	33.01	38.47	36.46	35.02	33.89
DAGL [22] (2021)	34.10	31.69	29.45	27.14	34.49	32.70	31.11	28.94	33.05	31.64	28.74	25.40
HNN (Ours)	42.91	41.63	40.22	39.79	41.55	40.48	39.58	38.94	42.16	41.03	40.29	39.82

Results in Darmsdadt Noise Dataset (DND)



Conclusions

In this work, we propose HNN, a hierarchical network for image denoising that improves fine-grained information learning by exchanging information across scales. We introduce LHNN, a weighted combinational loss incorporating L1 loss, VGG-19 perceptual loss, and MS-SSIM to enhance spatio-contextual learning. Our experiments on benchmark datasets demonstrate HNN's superior performance compared to state-of-the-art methods using various quantitative metrics.



MPRNet 36.98 dB

DAGL 35.72 dB Restormer 35.89 dB

References

[38] Zamir, Syed Waqas, et al. "Learning enriched features for fast image restoration and enhancement." IEEE transactions on pattern analysis and *machine intelligence* 45.2 (2022): 1934-1948.

[36] Mehri, Armin, Parichehr B. Ardakani, and Angel D. Sappa. "MPRNet: Multi-path residual network for lightweight image super resolution." Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. 2021.



Table 2. Performance comparisons of HNN with SOTA methods on SIDD [1] and DND [23] datasets. † indicates the methods using additional data during training. Note: the proposed HNN is trained on SIDD [1] dataset and tested on DND [23] dataset. Cells highlighted in .. represents highest values and, cells highlighted in . represents second highest values respectively.

Method	SIDI	D [1]	DND [23]		
	PSNR↑	SSIM↑	PSNR↑	SSIM↑	
BM3D [8] (2007)	25.65	0.685	34.51	0.851	
MLP [5] (2012)	24.71	0.641	34.23	0.833	
DnCNN [39] (2017)	23.66	0.583	32.43	0.790	
CBDNet [†] [13] (2019)	31.25	0.801	38.06	0.942	
RIDNet [†] [4] (2019)	38.74	0.951	39.26	0.953	
VDN [32] (2019)	39.28	0.956	39.38	0.952	
AINDNet [†] [18] (2020)	38.74	0.952	39.37	0.951	
SADNet [†] [6] (2020)	38.97	0.957	39.59	0.952	
DANet+† [33] (2020)	39.15	0.957	39.58	0.955	
CycleISP [†] [34] (2020)	39.52	0.957	39.56	0.956	
DAGL [22] (2021)	38.94	0.953	39.77	0.956	
DeamNet [†] [24] (2021)	38.79	0.957	39.63	0.953	
MPRNet [36] (2021)	39.71	0.958	39.80	0.954	
MIRNet-v2 [38] (2022)	39.84	0.959	39.86	0.955	
HNN (ours)	43.82	0.968	41.06	0.956	

MirNet-v2 37.31 dB

HNN (Ours) 38.92 dB

